Tocopherol
Tocopherol is an important lipid-soluble antioxidant. It performs its functions as antioxidant in what is known by the glutathion peroxidase pathway and that it protects cell membranes from oxidation by reacting with lipid radicals produced in the lipid peroxidation chain reaction. This would remove the free radical intermediates and prevent the oxidation reaction from continuing. The oxidized α-tocopheroxyl radicals produced in this process may be recycled back to the active reduced form through reduction by other antioxidants, such as ascorbate, retinol or ubiquinol. However, the importance of the antioxidant properties of this molecule at the concentrations present in the body are not clear and it is possible that the reason why vitamin E is required in the diet is unrelated to its ability to act as an antioxidant. Other forms of vitamin E have their own unique properties; for example, gamma-tocopherol is a nucleophile that can react with electrophilic
mutagens.
Vitamin E has many biological functions. The antioxidant function is considered to be the most important function vitamin E is best known for. However, there are other functions that have also been recognized to be of importance. α-Tocopherol has a regulatory effect on enzymatic activities. For instance, protein kinase C (PKC), which plays a role in smooth muscle growth, can be inhibited by α-tocopherol. α-Tocopherol has a stimulatory effect on the dephosphorylation enzyme, protein phosphatase 2A, which in turn, cleaves phosphate groups from PKC leading to its deactivation, bringing the smooth muscle growth to a halt. Vitamin E also has an effect on gene expression. Macrophages rich in cholesterol are found in the atherogenetic tissue. Scavenger receptor CD36 is a class B scavenger receptor found to be up-regulated by oxidized low density lipoprotein (LDL) and binds it. Treatment with alpha tocopherol was found to down regulate the CD36 scavenger receptor gene expression as well as the scavenger receptor class A (SR-A). In addition to the effect it has been shown to have on SRA and CD36, α-tocopherol also has an effect on expression of the connective tissue growth factor (CTGF). CTGF gene, when expressed, is responsible for the repair of the wounds and regeneration of the extracellular tissue that is lost or damaged during atherosclerosis. Moreover, vitamin E also plays a role in neurological functions, and inhibition of platelet aggregation and it has even been suggested that the most important function of vitamin E is as a signaling molecule, and that it has no significant role in antioxidant metabolism.So far, most studies about vitamin E have supplemented using only alpha-tocopherol, but doing so leads to reduced serum gamma- and delta-tocopherol concentrations. Moreover, a 2007 clinical study involving alpha-tocopherol concluded that supplementation did not reduce the risk of major cardiovascular events in middle aged and older men.
Tocotrienols
Compared with tocopherols, tocotrienols are sparsely studied. Less than 1% of PubMed papers on vitamin E relate to tocotrienols. Current research direction is starting to give more prominence to the tocotrienols, the lesser known but more potent antioxidants in the vitamin E family. Some studies have suggested that tocotrienols have specialized roles in protecting neurons from damage and cholesterol reduction by inhibiting the activity of HMG-CoA reductase; delta-tocotrienol blocks processing of sterol regulatory element‐binding proteins (SREBPs).Oral consumption of tocotrienols is also thought to protect against stroke-associated brain damage in vivo. Until further research has been carried out on the other forms of vitamin E, conclusions relating to the other forms of vitamin E, based on trials studying only the efficacy of alpha-tocopherol, may be premature.
No comments:
Post a Comment